
-l ${sample_name} $output_dir/${fname}.bam

samtools sort -@ $NCPUS -o $output_dir/${fname}.bam $output_dir/${fname}.sam

stringtie -p $NCPUS -G $gene_dir/chrX.gtf -o $output_dir/${fname}.gtf ¥

-p $NCPUS --dta -x $seq_dir/chrX_tran ¥

-1 $input_dir/${fname}_1.fastq.gz -2 $input_dir/${fname}_2.fastq.gz ¥ -S $output_dir/${fname}.sam

At the begining, let's analyze only one sample. Below is a qsub script that performs a series of

analyzes of sample ERR188044, mapping with HISAT2 and assembling with StringTie. The part

shown in red is the description specific to qsub.

qsub_hisat2.sh
#!/bin/sh

#PBS -l ncpus=4
#PBS -N hisat2

#PBS -q small

cd $PBS_O_WORKDIR

fname=ERR188044_chrX
sample_name=`echo $fname | sed 's/_chrX//'`
input_dir=chrX_data/samples seq_dir=chrX_data/indexes
gene_dir=chrX_data/genes output_dir=output

mkdir -p $output_dir
hisat2

2. ChrX_data/samples contains array data of 12 samples with paired ends.

Practical exercise 1) RNA-seq analysis using HISAT2/StringTie

Here, we performed the analysis on Bias5 based on the RNA-seq analysis procedure using HISAT2/

StringTie/Ballgown published in Nature Protocol (Pertea, M. et al. Nat. Protoc. 11, 1650, 2016). The paper

can be obtained from the following site, so please refer to the paper for details of the procedure.

https://pubmed.ncbi.nlm.nih.gov/27560171/

1. Go to ex1 under the course directory and copy the data file chrX_data.tar.gz
(below, the line starting with $ represents the command to be executed).

$ cd ~/bias2111/ex1

$ tar xvfz chrX_data.tar.gz

Use the following files in the extracted directory

chrX_data: chrX_data/samples: Input read sequences (FASTQ files)

chrX_data/indexes: Genome index files used as references

 chrX_data/genes/chrX. gtf: gene annotation

Machine Translated by Google

3. Repeat the analysis performed in the previous section for 12 samples while changing the sample name

Note that -l ncpus=4 is specified as a PBS option at the top of the script, so 4 is substituted for the

variable $NCPUS in the script. Each of the three $NCPUS specifies the number of CPUs (threads) used

by each command, and here each command will consistently use the same 4CPUs to operate.

Submit the job with the command

$ echo ${Array[0]}

specified by fname. This can be executed by writing a script using the for statement, but let's execute it

using an array job here. For array jobs, a variable called $PBS_ARRAY_INDEX is embedded in the

script, and multiple jobs are generated by sequentially substituting values within the specified range and

executed in parallel. To use an array job, treat both the input and output files as file names with the same

name appended with a number, such as file.1, file.2, ... and specify them as file.$PBS_ARRAY_INDEX

in your script.

Unfortunately, the input file this time does not have such a name. In this case, giving each input file an

alias of the above format with a symbolic link is an easy way to understand, but here let us use a bash

array variable that can be written more concisely. An array variable is a data structure containing

multiple elements that allows each element to be retrieved by subscript. In bash, array is defined as

follows.

$ Array=(fileA fileB fileC)

Subscripts start at 0, so for example to extract and display the first element

$ qsub qsub_hisat2.sh

Check job status. Here, USERNAME should be replaced with your username.

$ qstat -u USERNAME

Make sure that the Status (second column from the back) is R (running). If this is Q, it is waiting for execution,

so you need to wait for a while until execution starts.

The job is finished when nothing is displayed in qstat. Check the newly output file with ls -lt. If it's working

correctly, a directory named " output" should be created and the results should be stored in it. In addition, the

standard output and standard error output during command execution are stored in files named

hisat2.oXXXXX and hisat2.eXXXXX (where XXXXX is the job ID), respectively. Check the contents to see if

there are any abnormal terminations.

Also, run the following command to check the execution log and resources used by the job.

$ tracejob XXXXX (where XXXXX is the same job ID as the file name above)

The resource used is displayed in the format resource_used.resource_type=### on the last line that indicates
the end status. As resource_type, cput is CPU time, walltime is real time, ncpus is the number of CPUs, and
mem is the amount of memory used by the job.

Machine Translated by Google

qsub_hisat2_array.sh

input_files is an array variable containing the input file names corresponding to the 12 samples.
The definition is a little tricky, but you can see what value is entered by executing the following

command surrounded by backquotes (backquotes execute the command inside and the result is

instructing to paste).

Now you can see that the array variables contain names corresponding to the 12 samples, such as

ERR188044_chrX, ERR188104_chrX. The next line extracts one element specified by
$PBS_ARRAY_INDEX from this array and assigns it to fname. Since the subscript of an array variable starts from 0,

submit the job

(Note that the curly braces are required). Using this array variable, the following script is

modified from the script in the previous section to use the array job. Corrections are shown in

blue.

$ ls chrX_data/samples | grep _1.fastq | sed 's/_1.fastq.gz//'

Note that the value of $PBS_ARRAY_INDEX (-J option) is between 0 and 11.

mkdir -p $output_dir

-l ${sample_name} $output_dir/${fname}.bam

#PBS -q small

#PBS -N hisat2

fname=${input_files[$PBS_ARRAY_INDEX]}

cd $PBS_O_WORKDIR

-1 $input_dir/${fname}_1.fastq.gz -2 $input_dir/${fname}_2.fastq.gz ¥

hisat2 -p $NCPUS --dta -x $seq_dir/chrX_tran ¥

#PBS -J 0-11

gene_dir=chrX_data/genes

seq_dir=chrX_data/indexes

samtools sort -@ $NCPUS -o $output_dir/${fname}.bam $output_dir/${fname}.sam

input_dir=chrX_data/samples

sample_name=`echo $fname | sed 's/_chrX//'`

-S $output_dir/${fname}.sam

#PBS -l ncpus=4

input_files=(`ls $input_dir | grep _1.fastq | sed 's/_1.fastq.gz//'`)

#!/bin/sh

output_dir=output

stringtie -p $NCPUS -G $gene_dir/chrX.gtf -o $output_dir/${fname}.gtf ¥

Machine Translated by Google

for bamfile in $output_dir/ERR*.bam; do

sample_name=`echo $fname | sed 's/_chrX//'`

fname=`basename $bamfile .bam`

stringtie -e -B -p ${NCPUS} -G stringtie_merged.gtf ¥

5. (Optional: Run R) Up to step 6 of the original paper is now complete, and in the ballgown directory, the

transcript/gene count data created for each sample is stored as a GTF file and a tab-delimited table data

for the Ballgown program. If you continue after this, it will be an analysis using R. If you use R on your

local machine, download the files below the ballgown directory with scp command and analyze them in

your local environment. You can also run R on Bias5, but in that case, be aware of the following points.

1) You can install missing packages by yourself. In that case, it will be installed in your home directory.

2) The X Windows environment must be set locally to display graphics. For this purpose, specify the ssh

-Y option when logging in.

$ qstat -u USERNAME -t

6. (Optional: Database reference) Although in this exercise, the reference sequence and its search index

When finished, check that the output directory contains the analysis results for the 12 samples. Also,

confirm that a file containing standard output and standard error output is created for each subjob.

$ qsub qsub_hisat2_array.sh

Check the status with qstat. By default, array jobs are displayed as one job, with

Status being B. To show the status of individual jobs (sub-jobs), use the qstat -t

option.

-o ${ballgown_out}/${sample_name}/${fname}.gtf $bamfile

done

This is inefficient because it is executed sequentially within a single job. Create a script that uses array

jobs to process this part. (An example answer is found under the ans directory)

4. At this point, you have mapped and assembled the reads from each sample to the reference sequences

and created a GTF file that records the transcript/gene locations for each sample. After that, the

assembly results for each sample are merged to create a single annotation file, which is then used to

proceed to the step of creating count data for each transcript/gene from the mapping results of each

sample. The script to be executed is created as postproc.sh. Run this with qsub.

(Optional below) Later in this script, we create count data for each sample.

It uses a for loop to process

Machine Translated by Google

qsub -W block=true preproc.sh

qsub postproc.sh

#!/bin/sh

qsub -W block=true qsub_hisat2_array.sh

Illumina iGenomes /bio/db/igenomes

path

/bio/ftp/ensemble

NCBI Genomes

was prepared in advance, it is necessary to prepare them by yourself in actual analysis. In that case, you

can refer to the following database files placed on bias5.

Ensembl

Here, we prepared a script preproc.sh to utilize the above databases and create an index using hisat2-build. If

you are interested, check the contents of the script and run it. This script retrieves data from iGenomes by

default, but can also be used to retrieve data from Ensembl or NCBI Genomes by modifying it.

database

7. (Tips: Executing multiple qsub commands by script)

The qsub command exits immediately after submitting the job and returns to the shell, allowing command

input. This is fine in most cases, but if you want to execute multiple qsub commands sequentially in your script,

it may not work well because the next job may start before the previous job has finished. There are several

ways to avoid this, but one easy way is to add "-W block=true" to your qsub options. By this option, the qsub

command does not finish until the execution of the job submitted by qsub is completed, so it can be used in the

same way as normal command execution. The following script executes the three qsub commands executed

so far: preprocessing (preproc.sh), main processing (qsub_hisat2_array.sh), and postprocessing (postproc.sh)

as a series of processes.

qsub_all.sh

/bio/ftp/genomes/refseq (or genbank)

Machine Translated by Google

$ seqkit split sce_prot.fasta -p 50

Practical exercise 2) BLAST execution using array jobs

In the lecture on How to use PBS, there was an example of array job, where the query sequence file was divided and

the command was executed for each query file as an array job. Let's do it in practice here. Let's move to ex2 under

the course directory. The query sequence is sce_prot.fasta, the whole-gene translation sequence of the budding

yeast genome that was used in the lecture.

There are many ways to split a sequence file, but here let's use the split subcommand of the sequence file

manipulation utility program SeqKit.

The descriptions specific to array job are in blue and the other descriptions specific to PBS are in red.

Since the option -J is specified, it is executed as an array job consisting of 50 subjobs in which the

values 1-50 specified with -J are substituted for the variable $PBS_ARRAY_INDEX. Here, since the input

file name is a 3-digit number starting with 0, the printf command is used to convert it to this format. This is

a command with the same specifications as C function printf, which specifies with "%03d" to convert

an integer to a 3-digit integer string starting from 0.

This command divides the arrays in the sequence file into the number of files specified by the -p option.

The results are stored in a directory called sce_prot.fasta.split. Let's check the contents of this. It is

divided into 50 files named sce_prot.part_nnn.fasta (nnn is a number from 001 to 050).

The script below runs blast as an array job with these files as input.

qsub_blast.sh

cd ${PBS_O_WORKDIR}

output=$outdir/sce_prot.part_${seqn}.tab

#PBS -J 1-50

-evalue 0.001 -out $output

query=sce_prot.fasta.split/sce_prot.part_${seqn}.fasta

seqn=`printf "%03d" $PBS_ARRAY_INDEX`

#PBS -l mem=12gb

#PBS -l ncpus=8

outdir=sce_prot.${db}.blast_out

#!/bin/sh

db=swissprot

#PBS -q small

blastp -num_threads $NCPUS -db $db -outfmt 6 -query $query ¥

mkdir -p $outdir

#PBS -N blast

Machine Translated by Google

In addition, 8 CPUs and 12 GB of memory are specified as resources to be allocated for each (sub) job. BLAST

will expand the database in memory as long as memory is available, so when using a large database, it is

necessary to secure the maximum amount of memory. A blast queue is provided for this purpose. But the

swissprot database used this time is not very large, so a normal small queue is sufficient.

$ qstat -u USERNAME -t

Let's run this with qsub.

For example, the following command outputs 010 (without line breaks).

$ qsub qsub_blast.sh

$ printf "%03d" 10

At this time, not all jobs are in the running state R, and some should be in the waiting state Q. Why? Now,

there are 50 jobs in the queue, and 8 CPUs are reserved and executed for each job. Therefore, the total number of

CPUs used by these jobs is 400, which exceeds the maximum number of CPUs that can be executed concurrently

per user for small queue, 300 (refer to the queue configuration table in Bias). In this case, concurrent number of jobs

cannot exceed 300/8 = 37.5 and thus the rest are waiting.

In general, when running a large number of independent jobs, it is often more efficient to increase the number of jobs

than to increase the number of CPUs per job, even when using the same number of CPUs. Therefore, the execution

efficiency generally decreases if a waiting state occurs due to the excess of the number of CPUs per job . In this case, if the

number of CPUs per job is set to 6 or less, the wait state due to such restrictions does not occur.

After the above job has been finished, edit the file and change the number of CPUs to 6 (ncpus=6) and re-execute.

However, please note that the number of jobs executed simultaneously may differ depending on how busy the queue is,

including the jobs of the other users.

Check the execution status of each sub-job with qstat -t.

Machine Translated by Google

